
Statistical Assumptions and
Properties of the OLS estimator
 SLR.1 yi  0  1xi  ui i  1. . .n
 SLR.2 xi,yi, i  1. .n is a random sample
 SLR.3 ∑xi − x 2  0
 SLR.4 Eui|x1,x2, . . .xn  0 i  1. . .n

 SLR.3 ′ ∑xi − x 2  0 and xi are fixed in repeated
sampling



Rks:
 SLR.2 says that the observations are all independent.
 SLR.4 says that each disturbance is mean independent of all

the explanatory variables xi. With SLR.2, this reduces to
Eui|xi  0.

 SLR.3 is usually strengthened to SLR.3 ′ in economics. This
allows us to treat the explanatory variables as fixed numbers
and strictly speaking guarantees SLR.4. In practice,
economists view SLR.4 as the crucial assumption, and
invoke SLR.3 ′ just to avoid saying "conditional on X". This
is a worthwhile simplification but it should not confuse you!



:Properties of

1 under SLR.1-SLR.4


1 

∑xi − x yi

∑xi − x 2 ∗ by SLR.3


∑xi − x 0  1xi  ui

∑xi − x 2 by SLR.1


0  0  1∑xi − x xi ∑xi − x ui

∑xi − x 2

 1 ∑
i

xi − x
∑xi − x 2 ui

≡ 1 ∑
i

wiui ∗ ∗



Rks:
 The weights satisfy∑wi  0 and∑wi

2  1/∑xi − x 2

 ∗ is the formula used to compute the estimator
 ∗ ∗ is the formula used to derive the sampling properties



:Expected value of

1

Define x  x1,x2, . . .xn.
E

1| x   1  E∑

i

wiui| x 

 1 ∑
i

wiEui| x  given wi  f x 

 1  0 by SLR.4
∴SLR.1-SLR.4 


1 is conditionally unbiased (given x ).

Rks:
 E


1  E E


1| x   E1  1. So conditionally

unbiased implies unbiased.
 Prove E


0  0.



: Variance of

1

 SLR.5 Varui| x   2 (conditional homoskedasticity)

Rks:
 In presence of SLR.2, SLR.5 is equivalent to Varui|xi  2

 If Varui|xi  2xi we have conditional heteroskedasticity
 Because Varui  EVarui| x   VarEui| x , with

random sampling we always have unconditional
homoskedasticity (Varui is a constant)!



From

1  1 ∑

i

wiui

We get
Var


1| x  ∑

i

wi
2Varui| x   2∑

ij

wiwjCovui,uj| x 

∑
i

wi
2Varui|xi by SLR.2

∑
i

wi
22 by SLR.5

 2

∑xi − x 2



Rks:
 In general, Var


1| x  is much more interesting than

Var

1. But under SLR.3 ′, (i.e. the regressors are "fixed"),

then these two objects are the same. In economics, we often
write Var


1  2/∑xi − x 2 even though we know the

regresssors are not fixed.



Definition: For SLR, OLS estimator of 2 is


2
 1

n − 2 ∑
ui

2

Under SLR.1-SLR.5, E
2
  2. (proof with ch3)

Definition: The "standard error of the regression" is

  
2

Definition: The "standard error of

1 is its estimated

standard deviation, i.e.

s.e.

1  

2

∑xi − x 2

Rk: In ch 3, we’ll go beyond first two moments of the OLS
estimators.



Statistical Properties using Matrix Notation
:Preliminaries
a. Expectation of a random matrix
Let Y be an mxn matrix of r.v.’s, i.e. Y  yij where yij is a
r.v.
Definition: EY ∈ mxn with EY ij  Eyij

Ex: Y 
y11 y12

y21 y22
EY 

Ey11 Ey12

Ey21 Ey22

Properties: Suppose Y1 and Y2 are mxn matrix of r.v.’s,
and Ai ∈ pxm, Bi ∈ nxr for i  1,2. Then
 EA1Y1B1  A2Y2B2  A1EY1B1  A2EY2B2



b. Covariance matrix
Let y be an mx1 vector of r.v.’s.
Definition: The covariance matrix of y, Vy ∈ mxm, is given
by

Vy  Ey − Eyy − Ey ′



 y − Ey is an mx1 vector of centered r.v.’s, and its outer
product is the mxm matrix of r.v.’s given by

y − Eyy − Ey ′



y1 − Ey1



ym − Eym

y1 − Ey1 ym − Eym



y1 − Ey12  y1 − Ey1ym − Eym

  

ym − Eymy1 − Ey1  ym − Eym2



Therefore,

Vy 
vary1  covy1,ym

  

covy1,ym  varym

So Vy  covyi,yj
 a.k.a. the "variance-covariance" or the "dispersion" matrix
 Vy is symmetric.

Properties: Suppose y is an mx1 vector of r.v.’s, a ∈ m,
and B ∈ rxm (or B ∈ .
 1. Va  y  Vy
 2. VBy  BVyB ′



:Sampling distribution of



I will rewrite the statistical assumptions slightly as
 S1 yi  0  1xi  ui i  1. . .n
 S2 ∑xi − x 2  0
 S3 Eui|x1,x2, . . .xn  Eui| x   0 i  1. . .n
 S4 Euiuj| x    ij2 where  ij is Kronecker’s delta fn.

a) ∀i Eui
2| x   2

b) ∀i ≠ j Euiuj| x   0
Rks:
 SLR.1S1
 SLR.3S2
 SLR.2 and SLR.4S3
 SLR.2 and SLR.5S4



:In matrix notation
 S1 y  X  u
 S2 X ′X is invertible
 S3 Eu|X  0
 S4 Vu|X  2In

Using S1 and S2

  X ′X−1X ′y
 X ′X−1X ′X  u
   X ′X−1X ′u

Define L  X ′X−1X ′, P  XX ′X−1X ′, M  I − P



:First Moment
E

|X  E  Lu|X

   LEu|X
  by S3

:Second Moment
V

|X  V  Lu|X

 VLu|X
 LVu|xL ′ by S4
 X ′X−1X ′2InXX ′X−1

 2X ′X−1X ′XX ′X−1

 2X ′X−1


