Statistical Assumptions and Properties of the OLS estimator

- SLR. $1 \quad y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i} \quad i=1 \ldots n$
- SLR. $2\left\{\left(x_{i}, y_{i}\right), i=1 . . n\right\}$ is a random sample
- SLR. $3 \sum\left(x_{i}-\bar{x}\right)^{2}>0$
- SLR. $4 E\left(u_{i} \mid x_{1}, x_{2}, \ldots x_{n}\right)=0 \quad i=1 \ldots n$
- SLR. $3^{\prime} \sum\left(x_{i}-\bar{x}\right)^{2}>0$ and $\left\{x_{i}\right\}$ are fixed in repeated sampling

Rks:

- SLR. 2 says that the observations are all independent.
- SLR. 4 says that each disturbance is mean independent of all the explanatory variables x_{i}. With SLR.2, this reduces to $E\left(u_{i} \mid X_{i}\right)=0$.
- SLR. 3 is usually strengthened to SLR. 3^{\prime} in economics. This allows us to treat the explanatory variables as fixed numbers and strictly speaking guarantees SLR.4. In practice, economists view SLR. 4 as the crucial assumption, and invoke SLR. 3^{\prime} just to avoid saying "conditional on X ". This is a worthwhile simplification but it should not confuse you!
:Properties of $\widehat{\beta}_{1}$ under SLR.1-SLR. 4

$$
\begin{align*}
\widehat{\beta}_{1} & =\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad(*) \quad \text { by SLR. } 3 \tag{*}\\
& =\frac{\sum\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}+u_{i}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad \text { by SLR. } 1 \\
& =\frac{\left.\beta_{0} \cdot 0+\beta_{1} \sum\left(x_{i}-\bar{x}\right) x_{i}+\sum\left(x_{i}-\bar{x}\right) u_{i}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\beta_{1}+\sum_{i}\left(\frac{x_{i}-\bar{x}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right) u_{i} \\
& \equiv \beta_{1}+\sum_{i} w_{i} u_{i} \quad(* *)
\end{align*}
$$

Rks:

- The weights satisfy $\sum w_{i}=0$ and $\sum w_{i}^{2}=1 / \sum\left(x_{i}-\bar{x}\right)^{2}$
- (*) is the formula used to compute the estimator
- ($* *$) is the formula used to derive the sampling properties
:Expected value of $\widehat{\beta}_{1}$
Define $\underline{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$.

$$
\begin{aligned}
E\left(\widehat{\beta}_{1} \mid \underline{x}\right) & =\beta_{1}+E\left(\sum_{i} w_{i} u_{i} \mid \underline{x}\right) \\
& =\beta_{1}+\sum_{i} w_{i} E\left(u_{i} \mid \underline{x}\right) \quad \text { given } w_{i}=f(\underline{x}) \\
& =\beta_{1}+0 \quad \text { by SLR. } 4
\end{aligned}
$$

\therefore SLR.1-SLR. $4 \Rightarrow \widehat{\beta}_{1}$ is conditionally unbiased (given \underline{x}).
Rks:

- $E\left(\widehat{\beta}_{1}\right)=E\left[E\left(\widehat{\beta}_{1} \mid \underline{x}\right)\right]=E\left(\beta_{1}\right)=\beta_{1}$. So conditionally unbiased implies unbiased.
- Prove $E\left(\widehat{\beta}_{0}\right)=\beta_{0}$.
: Variance of $\widehat{\beta}_{1}$
- $\operatorname{SLR} .5 \operatorname{Var}\left(u_{i} \mid \underline{X}\right)=\sigma^{2} \quad$ (conditional homoskedasticity)

Rks:

- In presence of SLR.2, SLR. 5 is equivalent to $\operatorname{Var}\left(u_{i} \mid x_{i}\right)=\sigma^{2}$
- If $\operatorname{Var}\left(u_{i} \mid x_{i}\right)=\sigma^{2}\left(x_{i}\right)$ we have conditional heteroskedasticity
- Because $\operatorname{Var}\left(u_{i}\right)=E\left[\operatorname{Var}\left(u_{i} \mid \underline{x}\right)\right]+\operatorname{Var}\left[E\left(u_{i} \mid \underline{x}\right)\right]$, with random sampling we always have unconditional homoskedasticity $\left(\operatorname{Var}\left(u_{i}\right)\right.$ is a constant)!

From

$$
\widehat{\beta}_{1}=\beta_{1}+\sum_{i} w_{i} u_{i}
$$

We get

$$
\begin{array}{rlrl}
\operatorname{Var}\left(\widehat{\beta}_{1} \mid \underline{x}\right) & =\sum_{i} w_{i}^{2} \operatorname{Var}\left(u_{i} \mid \underline{x}\right)+2 \sum_{i<j} w_{i} w_{j} \operatorname{Cov}\left(u_{i}, u_{j} \mid \underline{x}\right) \\
& =\sum_{i} w_{i}^{2} \operatorname{Var}\left(u_{i} \mid x_{i}\right) & & \text { by SLR. } 2 \\
& =\sum_{i} w_{i}^{2} \sigma^{2} & & \text { by SLR. } 5 \\
& =\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}} &
\end{array}
$$

Rks:

- In general, $\operatorname{Var}\left(\widehat{\beta}_{1} \mid \underline{x}\right)$ is much more interesting than $\operatorname{Var}\left(\widehat{\beta}_{1}\right)$. But under SLR.3', (i.e. the regressors are "fixed"), then these two objects are the same. In economics, we often write $\operatorname{Var}\left(\widehat{\beta}_{1}\right)=\sigma^{2} / \sum\left(x_{i}-\bar{x}\right)^{2}$ even though we know the regresssors are not fixed.

Definition: For SLR, OLS estimator of σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{n-2} \sum \widehat{u}_{i}^{2}
$$

Under SLR.1-SLR.5, $E\left(\hat{\sigma}^{2}\right)=\sigma^{2}$. (proof with ch3)
Definition: The "standard error of the regression" is

$$
\hat{\sigma}=\sqrt{\hat{\sigma}^{2}}
$$

Definition: The "standard error of $\widehat{\beta}_{1}$ is its estimated standard deviation, i.e.

$$
\text { s.e. }\left(\widehat{\beta}_{1}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}}
$$

Rk: In ch 3, we'll go beyond first two moments of the OLS estimators.

Statistical Properties using Matrix Notation

:Preliminaries

a. Expectation of a random matrix

Let Y be an ($m x n$) matrix of r.v.'s, i.e. $Y=\left(y_{i j}\right)$ where $y_{i j}$ is a r.v.

Definition: $E(Y) \in \mathbb{R}^{m \times n}$ with $[E(Y)]_{i j}=E\left(y_{i j}\right)$

$$
\text { Ex: } \quad Y=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right] \quad E(Y)=\left[\begin{array}{ll}
E\left(y_{11}\right) & E\left(y_{12}\right) \\
E\left(y_{21}\right) & E\left(y_{22}\right)
\end{array}\right]
$$

Properties: Suppose Y^{1} and Y^{2} are ($m x n$) matrix of r.v.'s, and $A^{i} \in \mathbb{R}^{p x m}, B^{i} \in \mathbb{R}^{n x r}$ for $i=1,2$. Then

- $E\left(A^{1} Y^{1} B^{1}+A^{2} Y^{2} B^{2}\right)=A^{1} E\left(Y^{1}\right) B^{1}+A^{2} E\left(Y^{2}\right) B^{2}$
b. Covariance matrix

Let y be an ($m x 1$) vector of r.v.'s.
Definition: The covariance matrix of $y, V(y) \in \mathbb{R}^{m \times m}$, is given by

$$
V(y)=E\left((y-E y)(y-E y)^{\prime}\right)
$$

- $y-E y$ is an ($m x 1$) vector of centered r.v.'s, and its outer product is the ($m x m$) matrix of r.v.'s given by

$$
\begin{aligned}
& (y-E y)(y-E y)^{\prime} \\
= & {\left[\begin{array}{c}
y_{1}-E y_{1} \\
\vdots \\
y_{m}-E y_{m}
\end{array}\right]\left[\begin{array}{ccc}
y_{1}-E y_{1} \cdots & \left.y_{m}-E y_{m}\right]
\end{array}\right.} \\
= & {\left[\begin{array}{ccc}
\left(y_{1}-E y_{1}\right)^{2} & \cdots & \left(y_{1}-E y_{1}\right)\left(y_{m}-E y_{m}\right) \\
\vdots & \ddots & \vdots \\
\left(y_{m}-E y_{m}\right)\left(y_{1}-E y_{1}\right) & \cdots & \left(y_{m}-E y_{m}\right)^{2}
\end{array}\right] }
\end{aligned}
$$

Therefore,

$$
V(y)=\left[\begin{array}{ccc}
\operatorname{var}\left(y_{1}\right) & \cdots & \operatorname{cov}\left(y_{1}, y_{m}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{cov}\left(y_{1}, y_{m}\right) & \cdots & \left.\operatorname{var} y_{m}\right)
\end{array}\right]
$$

So $[V(y)]=\operatorname{cov}\left(y_{i}, y_{j}\right)$

- a.k.a. the "variance-covariance" or the "dispersion" matrix - $V(y)$ is symmetric.

Properties: Suppose y is an ($m x 1$) vector of r.v.'s, $a \in \mathbb{R}^{m}$, and $B \in \mathbb{R}^{r x m}$ (or $B \in \mathbb{R}$).

- 1. $V(a+y)=V(y)$
- 2. $V(B y)=B V(y) B^{\prime}$

:Sampling distribution of $\widehat{\beta}$

I will rewrite the statistical assumptions slightly as

- S1 $y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i} \quad i=1 \ldots n$
- S2 $\sum\left(x_{i}-\bar{x}\right)^{2}>0$
- S3 $E\left(u_{i} \mid x_{1}, x_{2}, \ldots x_{n}\right)=E\left(u_{i} \mid \underline{X}\right)=0 \quad i=1 \ldots n$
- S4 $E\left(u_{i} u_{j} \underline{x}\right)=\delta_{i j} \sigma^{2}$ where $\delta_{i j}$ is Kronecker's delta fn.

$$
\begin{array}{ll}
\text { a) } \forall i & E\left(u_{i}^{2} \mid \underline{x}\right)=\sigma^{2} \\
\text { b) } \forall i \neq j & E\left(u_{i} u_{j} \mid \underline{x}\right)=0
\end{array}
$$

Rks:

- SLR.1 \Leftrightarrow S1
- SLR. $3 \Leftrightarrow$ S2
- SLR. 2 and SLR. $4 \Rightarrow$ S3
- SLR. 2 and SLR. $5 \Rightarrow$ S4
:In matrix notation
- S1 $y=X \beta+u$
- S2 $X^{\prime} X$ is invertible
- S3 $E(u \mid X)=0$
- S4 $V(u \mid X)=\sigma^{2} I_{n}$

Using S1 and S2

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u) \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u
\end{aligned}
$$

Define $L=\left(X^{\prime} X\right)^{-1} X^{\prime}, \quad P=X\left(X^{\prime} X\right)^{-1} X^{\prime}, M=I-P$
:First Moment

$$
\begin{aligned}
E(\widehat{\beta} \mid X) & =E(\beta+L u \mid X) \\
& =\beta+L E(u \mid X) \\
& =\beta \quad \text { by } \mathrm{S} 3
\end{aligned}
$$

:Second Moment

$$
\begin{aligned}
V(\widehat{\beta} \mid X) & =V(\beta+L u \mid X) \\
& =V(L u \mid X) \\
& =L V(u \mid x) L^{\prime} \quad \text { by S4 } \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\sigma^{2} I_{n}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

